PREDICTION OF EARTHQUAKE INDUCED DISPLACEMENTS OF SLOPES USING HYBRID SUPPORT VECTOR REGRESSION WITH PARTICLE SWARM OPTIMIZATION

نویسنده

  • H. Fattahi
چکیده مقاله:

Displacements induced by earthquake can be very large and result in severe damage to earth and earth supported structures including embankment dams, road embankments, excavations and retaining walls. It is important, therefore, to be able to predict such displacements. In this paper, a new approach to prediction of earthquake induced displacements of slopes (EIDS) using hybrid support vector regression (SVR) with particle swarm optimization (PSO) is presented. The PSO is combined with the SVR for determining the optimal value of its user-defined parameters. The optimization implementation by the PSO significantly improves the generalization ability of the SVR. In this research, the input data for the EIDS prediction consist of values of geometrical and geotechnical input parameters. As an output, the model estimates the EIDS that can be modeled as a function approximation problem. A dataset that includes 45 data points was applied in current study, while 36 data points (80%) were used for constructing the model and the remainder data points (9 data points) were used for assessment of degree of accuracy and robustness. The results obtained show that the SVR-PSO model can be used successfully for prediction of the EIDS.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of daily evaporation using hybrid support vector regression-firefly optimization algorithm and multilayer perceptron

Prediction of daily evaporation is a valuable and determinant tool in sustainable agriculture and hydrological issues, especially in the design and management of water resources systems. Therefore, in this study, the ability of artificial intelligence models of multi-layer perceptron (MLP), support vector regression (SVR), and the hybrid model of support vector regression-firefly optimization a...

متن کامل

Hybrid Particle Swarm Optimization and Support Vector Regression Performance in Exchange Rate Prediction

In this paper, we present a hybrid particle swarm optimization and support vector regression approach to predict exchange rate. This hybrid method examines the validity to optimize the parameters of penalty term and kernel function. For the experiments, the data of exchange rates (USD/CNY, EUR/CNY and CNY/JPY) are examined and optimized to be used for time series predictions with hybrid particl...

متن کامل

Prediction of Mine Gas Emission Rate using Support Vector Regression and Chaotic Particle Swarm Optimization Algorithm

Forecasting of gas emission rate in mine is a complicated problem due to its nonlinearity and the small quantity of training data. Support vector regression (SVR) can solve the problem with small samples, nonlinear and high dimensions. However, the precision of SVR is significantly affected by its parameter. In order to improve the mine gas emission rate accurately, an optimal selection approac...

متن کامل

Optimization of Support Vector Regression using Genetic Algorithm and Particle Swarm Optimization for Rainfall Prediction in Dry Season

Support Vector Regression (SVR) is Support Vector Machine (SVM) is used for regression case. Regression method is one of prediction season method has been commonly used. SVR process requires kernel functions to transform the non-linear inputs into a high dimensional feature space. This research was conducted to predict rainfall in the dry season at 15 weather stations in Indramayu district. The...

متن کامل

A Hybrid Model for Business Failure Prediction – Utilization of Particle Swarm Optimization and Support Vector Machines

Bankruptcy has long been an important topic in finance and accounting research. Recent headline bankruptcies have included Enron, Fannie Mae, Freddie Mac, Washington Mutual, Merrill Lynch, and Lehman Brothers. These bankruptcies and their financial fallout have become a serious public concern due to huge influence these companies play in the real economy. Many researchers began investigating ba...

متن کامل

Hybrid Particle Swarm Optimization for Regression Testing

Regression Testing ensures that any enhancement made to software will not affect specified functionality of software. The execution of all test cases can be long and complex to run; this makes it a costlier process. The prioritization of test cases can help in reduction in cost of regression testing, as it is inefficient to rerun each and every test case. In this research paper, the criterion c...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 5  شماره 3

صفحات  267- 282

تاریخ انتشار 2015-08

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023